跳转至

关于 Raft 的简单介绍Graph

分布式系统中,同一份数据通常会有多个副本,这样即使少数副本发生故障,系统仍可正常运行。这就需要一定的技术手段来保证多个副本之间的一致性。

基本原理:Raft 就是一种用于保证多副本一致性的协议。Raft 采用多个副本之间竞选的方式,赢得”超过半数”副本投票的(候选)副本成为 Leader,由 Leader 代表所有副本对外提供服务;其他 Follower 作为备份。当该 Leader 出现异常后(通信故障、运维命令等),其余 Follower 进行新一轮选举,投票出一个新的 Leader。Leader 和 Follower 之间通过心跳的方式相互探测是否存活,并以 Raft-wal 的方式写入硬盘,超过多个心跳仍无响应的副本会认为发生故障。

Note

因为 Raft-wal 需要定期写硬盘,如果硬盘写能力瓶颈会导致 Raft 心跳失败,导致重新发起选举。硬盘IO严重堵塞情况下,会导致长期无法选举出Leader。

读写流程:对于客户端的每个写入请求,Leader 会将该写入以 Raft-wal 的方式,将该条同步给其他 Follower,并只有在“超过半数”副本都成功收到 Raft-wal 后,才会返回客户端该写入成功。对于客户端的每个读取请求,都直接访问 Leader,而 Follower 并不参与读请求服务。

故障流程:如果系统只有一个副本时,其自身就是 Leader;如果其发生故障,系统将完全不可用。如果系统有 3 个副本,其中一个副本是 Leader,其他 2 个副本是 Follower;即使原 Leader 发生故障,剩下两个副本仍可投票出一个新的Leader(以及一个Follower),此时系统仍可使用;但是当这2个副本中任一者再次发生故障后,由于投票人数不足,系统将完全不可用。

Note

Raft 多副本的方式与 HDFS 多副本的方式是不同的,Raft 基于“多数派”投票,因此副本数量不能是偶数。

Listener:这是一种特殊的 Raft 角色,并不参与投票,也不能用于多副本的数据一致性。在NebulaGraph中,其唯一作用是从 Leader 读取 Raft-wal,并向ElasticSearch集群同步。


最后更新: 2021年5月20日
Back to top