跳转至

导入 Kafka 数据Graph

本文简单说明如何使用 Exchange 将存储在 Kafka 上的数据导入 NebulaGraph。

环境配置Graph

本文示例在 MacOS 下完成,以下是相关的环境配置信息:

  • 硬件规格:
    • CPU:1.7 GHz Quad-Core Intel Core i7
    • 内存:16 GB
  • Spark:2.4.7,单机版
  • NebulaGraph:2.6.1。使用 Graph。

前提条件Graph

开始导入数据之前,用户需要确认以下信息:

  • 已经Graph 并获取如下信息:

    • Graph 服务和 Meta 服务的的 IP 地址和端口。
    • 拥有 NebulaGraph 写权限的用户名和密码。
  • 已经编译 Exchange。详情请参见Graph。本示例中使用 Exchange 2.6.1。
  • 已经安装 Spark。
  • 了解 NebulaGraph 中创建 Schema 的信息,包括 Tag 和 Edge type 的名称、属性等。
  • 已经安装并开启 Kafka 服务。

操作步骤Graph

步骤 1:在 NebulaGraph 中创建 SchemaGraph

分析数据,按以下步骤在 NebulaGraph 中创建 Schema:

  1. 确认 Schema 要素。NebulaGraph 中的 Schema 要素如下表所示。

    要素 名称 属性
    Tag player name string, age int
    Tag team name string
    Edge Type follow degree int
    Edge Type serve start_year int, end_year int
  2. 在 NebulaGraph 中创建一个图空间 basketballplayer,并创建一个 Schema,如下所示。

    ## 创建图空间
    nebula> CREATE SPACE basketballplayer \
            (partition_num = 10, \
            replica_factor = 1, \
            vid_type = FIXED_STRING(30));
    
    ## 选择图空间 basketballplayer
    nebula> USE basketballplayer;
    
    ## 创建 Tag player
    nebula> CREATE TAG player(name string, age int);
    
    ## 创建 Tag team
    nebula> CREATE TAG team(name string);
    
    ## 创建 Edge type follow
    nebula> CREATE EDGE follow(degree int);
    
    ## 创建 Edge type serve
    nebula> CREATE EDGE serve(start_year int, end_year int);
    

更多信息,请参见Graph。

步骤 2:修改配置文件Graph

Note

如果部分数据存储在 Kafka 的 value 域内,需要自行修改源码,从 Kafka 中获取 value 域,将 value 通过 from_json 函数解析,然后作为 Dataframe 返回。

编译 Exchange 后,复制target/classes/application.conf文件设置 Kafka 数据源相关的配置。在本示例中,复制的文件名为kafka_application.conf。各个配置项的详细说明请参见Graph。

{
  # Spark 相关配置
  spark: {
    app: {
      name: Nebula Exchange 2.6.1
    }
    driver: {
      cores: 1
      maxResultSize: 1G
    }
    cores {
      max: 16
    }
  }

  # NebulaGraph 相关配置
  nebula: {
    address:{
      # 以下为 NebulaGraph 的 Graph 服务和 Meta 服务所在机器的 IP 地址及端口。
      # 如果有多个地址,格式为 "ip1:port","ip2:port","ip3:port"。
      # 不同地址之间以英文逗号 (,) 隔开。
      graph:["127.0.0.1:9669"]
      meta:["127.0.0.1:9559"]
    }
    # 填写的账号必须拥有 NebulaGraph 相应图空间的写数据权限。
    user: root
    pswd: nebula
    # 填写 NebulaGraph 中需要写入数据的图空间名称。
    space: basketballplayer
    connection {
      timeout: 3000
      retry: 3
    }
    execution {
      retry: 3
    }
    error: {
      max: 32
      output: /tmp/errors
    }
    rate: {
      limit: 1024
      timeout: 1000
    }
  }
  # 处理点
  tags: [
    # 设置 Tag player 相关信息。
    {
      # NebulaGraph 中对应的 Tag 名称。
      name: player
      type: {
        # 指定数据源文件格式,设置为 Kafka。
        source: kafka
        # 指定如何将点数据导入 NebulaGraph:Client 或 SST。
        sink: client
      }
      # Kafka 服务器地址。
      service: "127.0.0.1:9092"
      # 消息类别。
      topic: "topic_name1"

      # Kafka 数据有固定的域名称:key、value、topic、partition、offset、timestamp、timestampType。
      # Spark 读取为 DataFrame 后,如果需要指定多个字段,用英文逗号(,)隔开。
      # 在 fields 里指定字段名称,例如用 key 对应 Nebula 中的 name, value 对应 Nebula 中的 age,示例如下:
      fields: [key,value]
      nebula.fields: [name,age]

      # 指定表中某一列数据为 NebulaGraph 中点 VID 的来源。
      # 这里的值 key 和上面的 key 重复,表示 key 既作为 VID,也作为属性 name。
      vertex:{
          field:key
      }

      # 单批次写入 NebulaGraph 的数据条数。
      batch: 10

      # Spark 分区数量
      partition: 10
      # 读取消息的间隔。单位:秒。
      interval.seconds: 10
    }
    # 设置 Tag team 相关信息。
    {
      name: team
      type: {
        source: kafka
        sink: client
      }
      service: "127.0.0.1:9092"
      topic: "topic_name2"
      fields: [key]
      nebula.fields: [name]
      vertex:{
          field:key
      }
      batch: 10
      partition: 10
      interval.seconds: 10
    }

  ]

  # 处理边数据
  edges: [
    # 设置 Edge type follow 相关信息
    {
      # NebulaGraph 中对应的 Edge type 名称。
      name: follow

      type: {
        # 指定数据源文件格式,设置为 Kafka。
        source: kafka

        # 指定边数据导入 NebulaGraph 的方式,
        # 指定如何将点数据导入 NebulaGraph:Client 或 SST。
        sink: client
      }

      # Kafka 服务器地址。
      service: "127.0.0.1:9092"
      # 消息类别。
      topic: "topic_name3"

      # Kafka 数据有固定的域名称:key、value、topic、partition、offset、timestamp、timestampType。
      # Spark 读取为 DataFrame 后,如果需要指定多个字段,用英文逗号(,)隔开。
      # 在 fields 里指定字段名称,例如用 key 对应 Nebula 中的 degree,示例如下:
      fields: [key]
      nebula.fields: [degree]

      # 在 source 里,将 topic 中某一列作为边的起始点数据源。
      # 在 target 里,将 topic 中某一列作为边的目的点数据源。
      source:{
          field:timestamp
      }

      target:{
          field:offset
      }

      # 指定一个列作为 rank 的源(可选)。
      #ranking: rank

      # 单批次写入 NebulaGraph 的数据条数。
      batch: 10

      # Spark 分区数量
      partition: 10

      # 读取消息的间隔。单位:秒。
      interval.seconds: 10
    }

    # 设置 Edge type serve 相关信息
    {
      name: serve
      type: {
        source: kafka
        sink: client
      }
      service: "127.0.0.1:9092"
      topic: "topic_name4"

      fields: [timestamp,offset]
      nebula.fields: [start_year,end_year]
      source:{
          field:key
      }

      target:{
          field:value
      }

      # 指定一个列作为 rank 的源(可选)。
      #ranking: rank

      batch: 10
      partition: 10
      interval.seconds: 10
    }
  ]
}

步骤 3:向 NebulaGraph 导入数据Graph

运行如下命令将 Kafka 数据导入到 NebulaGraph 中。关于参数的说明,请参见Graph。

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.1.jar_path> -c <kafka_application.conf_path>

Note

JAR 包有两种获取方式:Graph或者从 maven 仓库下载。

示例:

${SPARK_HOME}/bin/spark-submit  --master "local" --class com.vesoft.nebula.exchange.Exchange  /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.1.jar  -c /root/nebula-exchange/nebula-exchange/target/classes/kafka_application.conf

用户可以在返回信息中搜索batchSuccess.<tag_name/edge_name>,确认成功的数量。例如batchSuccess.follow: 300

步骤 4:(可选)验证数据Graph

用户可以在 NebulaGraph 客户端(例如 NebulaGraph Studio)中执行查询语句,确认数据是否已导入。例如:

GO FROM "player100" OVER follow;

用户也可以使用命令 Graph 查看统计数据。

步骤 5:(如有)在 NebulaGraph 中重建索引Graph

导入数据后,用户可以在 NebulaGraph 中重新创建并重建索引。详情请参见Graph。


最后更新: January 18, 2022
Back to top