跳转至

算法简介

图计算可以检测图结构,例如图中社区的检测、图的划分等,也可以揭示各个点之间关联关系的内在特征,例如点的中心性、相似性等。本文介绍相关算法和参数。

Note

本文仅介绍 Nebula Analytics 的参数,Nebula Algorithm 的参数请先参见对应的算法文件

Note

执行图计算时不仅需要设置算法的参数,对数据源也有要求。数据源需要包含起点和终点。PageRank、DegreeWithTime、SSSP、APSP、LPA、HANP、Louvain 算法还需要包含权重(weight)。

  • 如果数据源来自 HDFS,需要指定 CSV 文件,包含srcdst列,部分算法还需要包含weight列。
  • 如果数据源来自 Nebula Graph,需要指定边类型,该类型的边提供srcdst列,部分算法还需要指定边类型的某个属性作为weight列。

节点重要度算法

PageRank

PageRank(页面排序)算法根据点之间的关系(边)计算点的相关性和重要性,通常使用在搜索引擎页面排名中。如果一个网页被很多其他网页链接,说明这个网页比较重要(PageRank 值较高);如果一个 PageRank 值很高的网页链接到其他网页,那么被链接到的网页的 PageRank 值会提高。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      ITERATIONS 10 最大迭代次数。
      IS_DIRECTED true 是否考虑边的方向。如果设置为false,系统会自动添加反向边。
      EPS 0.0001 收敛精度,两轮迭代的结果差值小于这个值,结束迭代。
      DAMPING 0.85 阻尼系数,访问页面后的跳转概率。
    • 输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点 ID。
      VALUE double 点的 PageRank 值。

KCore

KCore 算法用于计算出没有小于 K 度的点组成的子图,通常使用在社区发现、金融风控等场景。其计算结果是判断点重要性最常用的参考值之一,体现了点的传播能力。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      TYPE vertex 计算类型。取值:vertexsubgraphvertex表示为每个点计算核心度,subgraph表示计算邻居。
      KMIN 1 范围计算时设置 K 的最小值。仅在TYPE=subgraph时生效。
      KMAX 1000000 范围计算时设置 K 的最大值。仅在TYPE=subgraph时生效。
    • TYPE=vertex时的输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点 ID。
      VALUE int 输出点的核心度。
    • TYPE=subgraph时的输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点 ID。
      VALUE VID类型相同 输出点的邻居。

DegreeCentrality(NStepDegree)

DegreeCentrality(度中心性) 算法用于查找图中的流行点。度中心性测量来自点的传入或传出(或两者)关系的数量,具体取决于关系投影的方向。一个点的度越大就意味着这个点的度中心性越高,该点在网络中就越重要。

Note

Nebula Analytics 仅粗略估算度中心性。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      STEP 3 计算度数。-1表示无穷大。
      BITS 6 用于基数估计的 hyperloglog 位宽。
      TYPE both 计算的边的方向。取值:inoutboth
    • TYPE=both时的输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点 ID。
      BOTH_DEGREE int 输出点的双向度中心性。
      OUT_DEGREE int 输出点的出方向度中心性。
      IN_DEGREE int 输出点的入方向度中心性。
    • TYPE=out时的输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点 ID。
      OUT_DEGREE int 输出点的出方向度中心性。
    • TYPE=in时的输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点 ID。
      IN_DEGREE int 输出点的入方向度中心性。

DegreeWithTime

DegreeWithTime 算法是基于边的时间范围统计邻居,查找出图中的流行点。

Note

仅 Nebula Analytics 支持该算法。

参数说明如下。

  • 传入参数

    参数 默认值 说明
    TYPE both 计算的边的方向。取值:inoutboth
    BEGIN_TIME - 起始时间。格式为yyyy-MM-dd HH:mm:ss.SSS
    END_TIME - 结束时间。格式为yyyy-MM-dd HH:mm:ss.SSS
  • TYPE=both时的输出参数

    参数 类型 说明
    VID 创建图空间时vid_type决定 点 ID。
    BOTH_DEGREE int 输出点的双向流行度。
    OUT_DEGREE int 输出点的出方向流行度。
    IN_DEGREE int 输出点的入方向流行度。
  • TYPE=out时的输出参数

    参数 类型 说明
    VID 创建图空间时vid_type决定 点 ID。
    OUT_DEGREE int 输出点的出方向流行度。
  • TYPE=in时的输出参数

    参数 类型 说明
    VID 创建图空间时vid_type决定 点 ID。
    IN_DEGREE int 输出点的入方向流行度。

BetweennessCentrality

BetweennessCentrality(中介中心性)算法是一种检测点对图中信息流的影响量的方法,用于查找从图的一部分到另一部分时作为桥梁的点。每个点都会根据通过该点的最短路径的数量获得一个分数,即中介中心性分数。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      ITERATIONS 10 最大迭代次数。
      IS_DIRECTED true 是否考虑边的方向。如果设置为false,系统会自动添加反向边。
      CHOSEN -1 选取的点ID,-1表示随机选。
      CONSTANT 2 系数。
    • 输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点 ID。
      VALUE double 点的中介中心性分数。

ClosenessCentrality

ClosenessCentrality(紧密中心性)算法用于计算一个点到所有其他可达点的最短距离的平均值的倒数。值越大,点在图中的位置越靠近中心,也可以用来衡量信息从该点传输到其他点的时间长短。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      IS_DIRECTED true 是否考虑边的方向。如果设置为false,系统会自动添加反向边。
      NUM_SAMPLES 10 采样的点数量。
    • 输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点 ID。
      VALUE double 点的紧密中心性分数。

路径算法

APSP

APSP(全图最短路径)算法用于寻找图中两点之间的所有最短路径。

Note

仅 Nebula Analytics 支持该算法。

参数说明如下。

  • 输出参数

    参数 类型 说明
    VID1 创建图空间时vid_type决定 起点的 ID。
    VID2 创建图空间时vid_type决定 终点的 ID。
    DISTANCE double 输出VID1VID2的距离。

SSSP

SSSP(单源最短路径)算法用于计算给定的一个点(起始点)出发到其余各点的最短路径长度。通常使用在网络路由、路径设计等场景。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      ROOT - 起始点的 VID。
    • 输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点 ID。
      DISTANCE double 输出ROOTVID的距离。

BFS

BFS(广度优先遍历)算法是一种基础的图遍历算法,它给定一个起始点,以递增的跳数访问其他点,即先遍历点的所有相邻点,再往相邻点的相邻点延伸。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      IS_DIRECTED true 是否考虑边的方向。如果设置为false,系统会自动添加反向边。
      ROOT - 起始点的 VID。
    • 输出参数

      参数 类型 说明
      ROOT 创建图空间时vid_type决定 起始点的 ID。
      VISITED int 输出ROOT访问过的点数量。

社区发现算法

LPA

LPA(标签传播)算法是一种基于图的半监督学习方法,其基本思路是用已标记点的标签信息去预测未标记点的标签信息。利用样本间的关系建图,点包括已标注和未标注数据,其边表示两个点的相似度,点的标签按相似度传递给其他点。标签数据就像是一个源头,可以对无标签数据进行标注,点的相似度越大,标签越容易传播。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      ITERATIONS 10 最大迭代次数。
      IS_DIRECTED true 是否考虑边的方向。如果设置为false,系统会自动添加反向边。
      IS_CALC_MODULARITY false 是否计算模块度。
    • 输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点的 ID。
      LABEL VID类型相同 输出标签相同的点的 ID。

HANP

HANP(Hop Attenuation & Node Preference)算法是LPA算法的优化算法,考虑了标签的其他信息,例如度的信息、距离信息等,同时在传播时引入了衰减系数,防止过渡传播。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      ITERATIONS 10 最大迭代次数。
      IS_DIRECTED true 是否考虑边的方向。如果设置为false,系统会自动添加反向边。
      PREFERENCE 1.0 对邻居节点度的偏向性。m>0表示偏向节点度高的邻居,m<0表示偏向节点度低的邻居,m=0表示不考虑邻居节点度。
      HOP_ATT 0.1 衰减因子。取值范围0~1。值越大衰减的越快,可以传递的次数越少。
    • 输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点的 ID。
      LABEL VID类型相同 输出标签相同的点的 ID。

ConnectedComponent

ConnectedComponent(联通分量)算法用于计算出图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强联通分量(strongly connected component),不考虑路径方向的为弱联通分量(weakly connected component)。

Note

Nebula Analytics 仅支持弱联通分量。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      IS_DIRECTED true 是否考虑边的方向。如果设置为false,系统会自动添加反向边。
      IS_CALC_MODULARITY false 是否计算模块度。
    • 输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点的 ID。
      LABEL VID类型相同 输出标签相同的点的 ID。

Louvain

Louvain 算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度。模块度用于区分社区内和社区间链路密度的差异,是衡量每个点划分社区的好坏。通常情况下,一个优秀的分群方法将会使得社区内部的模块度高于社区与社区之间。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      IS_DIRECTED true 是否考虑边的方向。如果设置为false,系统会自动添加反向边。
      OUTER_ITERATION 20 第一阶段最大迭代次数。
      INNER_ITERATION 10 第二阶段最大迭代次数。
      IS_CALC_MODULARITY false 是否计算模块度。
    • 输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点的 ID。
      LABEL VID类型相同 输出标签相同的点的 ID。

图特征算法

TriangleCount

TriangleCount(三角计数)算法用于统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      OPT 3 计算类型。取值:1(统计整个图)、2(通过每个点统计)、3(列出所有三角形)。
      REMOVED_DUPLICATION_EDGE true 是否排除重复边。
      REMOVED_SELF_EDGE true 是否排除自环边。
    • OPT=1时的输出参数

      参数 类型 说明
      COUNT int 输出全图的三角形数量。
    • OPT=2时的输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 输出每个点的 ID。
      COUNT int 输出每个点的三角形数量。
    • OPT=3时的输出参数

      参数 类型 说明
      VID1 VID类型相同 输出构成三角形的点 A 的 ID。
      VID2 VID类型相同 输出构成三角形的点 B 的 ID。
      VID3 VID类型相同 输出构成三角形的点 C 的 ID。

聚类算法

ClusteringCoefficient

ClusteringCoefficient(聚集系数)算法用于计算图中节点的聚集程度。在各类反映真实世界的网络结构,特别是社交网络结构中,各个点之间倾向于形成密度相对较高的网络群,也就是说,相对于在两个点之间随机连接而得到的网络,真实世界网络的聚集系数更高。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      TYPE local 聚集类型。取值:local(为每个点计算聚集系数)、global(为全图计算聚集系数)。
      REMOVED_DUPLICATION_EDGE true 是否排除重复边。
      REMOVED_SELF_EDGE true 是否排除自环边。
    • TYPE=local时的输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点的 ID。
      VALUE double 输出每个点的聚集系数。
    • TYPE=global时的输出参数

      参数 类型 说明
      VID 创建图空间时vid_type决定 点的 ID。
      VALUE double 输出全图的聚集系数。只有一行数据。

相似度算法

Jaccard

Jaccard(杰卡德相似度)算法用于计算两个点(或集合)的相似程度,预测他们之间的关系。适用于社交网上的好友推荐、关系预测等场景。

参数说明如下。

  • Nebula Analytics

    • 传入参数

      参数 默认值 说明
      IDS1 - 若干个 VID 构成的集合A。多个 VID 之间用英文逗号(,)隔开。不可为空。
      IDS2 - 若干个 VID 构成的集合B。多个 VID 之间用英文逗号(,)隔开。可以为空,为空时表示所有点。
      REMOVED_SELF_EDGE true 是否排除自环边。
    • 输出参数

      参数 类型 说明
      VID1 创建图空间时vid_type决定 第一个点的 ID。
      VID2 创建图空间时vid_type决定 第二个点的 ID。
      VALUE double VID1VID2的相似度。

最后更新: March 7, 2023