导入 Parquet 文件数据¶
本文以一个示例说明如何使用 Exchange 将存储在 HDFS 或本地的 Parquet 文件数据导入 NebulaGraph 。
数据集¶
本文以 basketballplayer 数据集为例。
环境配置¶
本文示例在 MacOS 下完成,以下是相关的环境配置信息:
- 硬件规格:
- CPU:1.7 GHz Quad-Core Intel Core i7
- 内存:16 GB
- Spark:2.4.7 单机版
- Hadoop:2.9.2 伪分布式部署
- NebulaGraph :master。
前提条件¶
开始导入数据之前,用户需要确认以下信息:
-
已经安装部署 NebulaGraph 并获取如下信息:
- Graph 服务和 Meta 服务的的 IP 地址和端口。
- 拥有 NebulaGraph 写权限的用户名和密码。
- 已经编译 Exchange。详情请参见编译 Exchange。本示例中使用 Exchange 3.8.0。
- 已经安装 Spark。
- 了解 NebulaGraph 中创建 Schema 的信息,包括 Tag 和 Edge type 的名称、属性等。
- 如果文件存储在 HDFS 上,需要确认 Hadoop 服务运行正常。
- 如果文件存储在本地且 NebulaGraph 是集群架构,需要在集群每台机器本地相同目录下放置文件。
操作步骤¶
步骤 1:在 NebulaGraph 中创建 Schema¶
分析 Parquet 文件中的数据,按以下步骤在 NebulaGraph 中创建 Schema:
-
确认 Schema 要素。 NebulaGraph 中的 Schema 要素如下表所示。
要素 名称 属性 Tag player
name string, age int
Tag team
name string
Edge Type follow
degree int
Edge Type serve
start_year int, end_year int
-
使用 NebulaGraph Console 创建一个图空间 basketballplayer,并创建一个 Schema,如下所示。
## 创建图空间 nebula> CREATE SPACE basketballplayer \ (partition_num = 10, \ replica_factor = 1, \ vid_type = FIXED_STRING(30)); ## 选择图空间 basketballplayer nebula> USE basketballplayer; ## 创建 Tag player nebula> CREATE TAG player(name string, age int); ## 创建 Tag team nebula> CREATE TAG team(name string); ## 创建 Edge type follow nebula> CREATE EDGE follow(degree int); ## 创建 Edge type serve nebula> CREATE EDGE serve(start_year int, end_year int);
更多信息,请参见快速开始。
步骤 2:处理 Parquet 文件¶
确认以下信息:
-
处理 Parquet 文件以满足 Schema 的要求。
-
获取 Parquet 文件存储路径。
步骤 3:修改配置文件¶
编译 Exchange 后,复制target/classes/application.conf
文件设置 Parquet 数据源相关的配置。在本示例中,复制的文件名为parquet_application.conf
。各个配置项的详细说明请参见配置说明。
{
# Spark 相关配置
spark: {
app: {
name: NebulaGraph Exchange 3.8.0
}
driver: {
cores: 1
maxResultSize: 1G
}
executor: {
memory:1G
}
cores: {
max: 16
}
}
# NebulaGraph 相关配置
nebula: {
address:{
# 指定 Graph 服务和所有 Meta 服务的 IP 地址和端口。
# 如果有多台服务器,地址之间用英文逗号(,)分隔。
# 格式:"ip1:port","ip2:port","ip3:port"
graph:["127.0.0.1:9669"]
#任意一个 Meta 服务的地址。
#如果您的 NebulaGraph 在虚拟网络中,如k8s,请配置 Leader Meta的地址。
meta:["127.0.0.1:9559"]
}
# 指定拥有 NebulaGraph 写权限的用户名和密码。
user: root
pswd: nebula
# 是否使用 RSA 加密的密码。
# enableRSA: true
# 使用 RSA 加密密码时的密钥。
# privateKey: ""
# 指定图空间名称。
space: basketballplayer
connection: {
timeout: 3000
retry: 3
}
execution: {
retry: 3
}
error: {
max: 32
output: /tmp/errors
}
rate: {
limit: 1024
timeout: 1000
}
}
# 处理点
tags: [
# 设置 Tag player 相关信息。
{
# 指定 NebulaGraph 中定义的 Tag 名称。
name: player
type: {
# 指定数据源,使用 Parquet。
source: parquet
# 指定如何将点数据导入 NebulaGraph :Client 或 SST。
sink: client
}
# 指定 Parquet 文件的路径。
# 如果文件存储在 HDFS 上,用双引号括起路径,以 hdfs://开头,例如"hdfs://ip:port/xx/xx"。
# 如果文件存储在本地,用双引号括起路径,以 file://开头,例如"file:///tmp/xx.csv"。
path: "hdfs://192.168.11.139000/data/vertex_player.parquet"
# 在 fields 里指定 Parquet 文件中 key 名称,其对应的 value 会作为 NebulaGraph 中指定属性的数据源。
# 如果需要指定多个值,用英文逗号(,)隔开。
fields: [age,name]
# 指定 NebulaGraph 中定义的属性名称。
# fields 与 nebula.fields 的顺序必须一一对应。
nebula.fields: [age, name]
# 指定一个列作为 VID 的源。
# vertex 的值必须与 Parquet 文件中的字段保持一致。
# 目前,NebulaGraph master仅支持字符串或整数类型的 VID。
vertex: {
field:id
# udf:{
# separator:"_"
# oldColNames:[field-0,field-1,field-2]
# newColName:new-field
# }
# 为 VID 增加指定的前缀。例如 VID 为 12345,增加前缀 tag1 后为 tag1_12345。下划线无法修改。
# prefix:"tag1"
# 对 string 类型的 VID 进行哈希化操作。
# policy:hash
}
# 过滤规则。符合过滤规则的数据会被导入NebulaGraph。
# filter: "name='Tom'"
# 批量操作类型,包括 INSERT、UPDATE 和 DELETE。默认为 INSERT。
#writeMode: INSERT
# 批量删除时是否删除该点关联的出边和入边。`writeMode`为`DELETE`时该参数生效。
#deleteEdge: false
# 指定单批次写入 NebulaGraph 的最大点数量。
batch: 256
# 数据写入 NebulaGraph 时需要创建的分区数。
partition: 32
}
# 设置 Tag team 相关信息。
{
name: team
type: {
source: parquet
sink: client
}
path: "hdfs://192.168.11.13:9000/data/vertex_team.parquet"
fields: [name]
nebula.fields: [name]
vertex: {
field:id
}
batch: 256
partition: 32
}
# 如果需要添加更多点,请参考前面的配置进行添加。
]
# 处理边
edges: [
# 设置 Edge type follow 相关信息。
{
# 指定 NebulaGraph 中定义的 Edge type 名称。
name: follow
type: {
# 指定数据源,使用 Parquet。
source: parquet
# 指定如何将点数据导入 NebulaGraph :Client 或 SST。
sink: client
}
# 指定 Parquet 文件的路径。
# 如果文件存储在 HDFS 上,用双引号括起路径,以 hdfs://开头,例如"hdfs://ip:port/xx/xx"。
# 如果文件存储在本地,用双引号括起路径,以 file://开头,例如"file:///tmp/xx.csv"。
path: "hdfs://192.168.11.13:9000/data/edge_follow.parquet"
# 在 fields 里指定 Parquet 文件中 key 名称,其对应的 value 会作为 NebulaGraph 中指定属性的数据源。
# 如果需要指定多个值,用英文逗号(,)隔开。
fields: [degree]
# 指定 NebulaGraph 中定义的属性名称。
# fields 与 nebula.fields 的顺序必须一一对应。
nebula.fields: [degree]
# 指定一个列作为起始点和目的点的源。
# vertex 的值必须与 Parquet 文件中的字段保持一致。
# 目前,NebulaGraph master仅支持字符串或整数类型的 VID。
source: {
field: src
# udf:{
# separator:"_"
# oldColNames:[field-0,field-1,field-2]
# newColName:new-field
# }
# 为 VID 增加指定的前缀。例如 VID 为 12345,增加前缀 tag1 后为 tag1_12345。下划线无法修改。
# prefix:"tag1"
# 对 string 类型的 VID 进行哈希化操作。
# policy:hash
}
target: {
field: dst
# udf:{
# separator:"_"
# oldColNames:[field-0,field-1,field-2]
# newColName:new-field
# }
# 为 VID 增加指定的前缀。例如 VID 为 12345,增加前缀 tag1 后为 tag1_12345。下划线无法修改。
# prefix:"tag1"
# 对 string 类型的 VID 进行哈希化操作。
# policy:hash
}
# 指定一个列作为 rank 的源(可选)。
#ranking: rank
# 过滤规则。符合过滤规则的数据会被导入NebulaGraph。
# filter: "name='Tom'"
# 批量操作类型,包括 INSERT、UPDATE 和 DELETE。默认为 INSERT。
#writeMode: INSERT
# 指定单批次写入 NebulaGraph 的最大边数量。
batch: 256
# 数据写入 NebulaGraph 时需要创建的分区数。
partition: 32
}
# 设置 Edge type serve 相关信息。
{
name: serve
type: {
source: parquet
sink: client
}
path: "hdfs://192.168.11.13:9000/data/edge_serve.parquet"
fields: [start_year,end_year]
nebula.fields: [start_year, end_year]
source: {
field: src
}
target: {
field: dst
}
batch: 256
partition: 32
}
]
# 如果需要添加更多边,请参考前面的配置进行添加。
}
步骤 4:向 NebulaGraph 导入数据¶
运行如下命令将 Parquet 文件数据导入到 NebulaGraph 中。关于参数的说明,请参见导入命令参数。
${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange.jar_path> -c <parquet_application.conf_path>
Note
JAR 包有两种获取方式:自行编译或者从 maven 仓库下载。
示例:
${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange_spark_2.4-3.8.0.jar -c /root/nebula-exchange/nebula-exchange/target/classes/parquet_application.conf
用户可以在返回信息中搜索batchSuccess.<tag_name/edge_name>
,确认成功的数量。例如batchSuccess.follow: 300
。
访问 Kerberos 认证的 HDFS¶
使用 Kerberos 进行安全认证时,需使用以下两种方式之一访问 Kerberos 认证的 HDFS。
-
在命令中设置 Kerberos 配置文件
在命令中配置
--conf
和--files
,例如:${SPARK_HOME}/bin/spark-submit --master xxx --num-executors 2 --executor-cores 2 --executor-memory 1g \ --conf "spark.driver.extraJavaOptions=-Djava.security.krb5.conf=./krb5.conf" \ --conf "spark.executor.extraJavaOptions=-Djava.security.krb5.conf=./krb5.conf" \ --files /local/path/to/xxx.keytab,/local/path/to/krb5.conf \ --class com.vesoft.nebula.exchange.Exchange \ exchange.jar -c xx.conf
--conf
中的文件路径有如下两种配置方式:- 配置文件的绝对路径。要求所有 YARN 或者 Spark 机器相同路径下都有对应文件。
- (YARN 模式下推荐)配置文件的相对路径(例如
./krb5.conf
)。通过--files
上传的资源文件就在 Java 虚拟机或者 JAR 的工作目录下。
--files
中的文件必须存储在执行spark-submit
命令的机器上。
-
不使用命令
将 Spark 和 Kerberos 认证的 Hadoop 部署在相同集群内,共用 HDFS 和 YARN,然后在 Spark 的
spark-env.sh
中增加配置export HADOOP_HOME=<hadoop_home_path>
。
步骤 5:(可选)验证数据¶
用户可以在 NebulaGraph 客户端(例如 NebulaGraph Studio)中执行查询语句,确认数据是否已导入。例如:
LOOKUP ON player YIELD id(vertex);
用户也可以使用命令 SHOW STATS
查看统计数据。
步骤 6:(如有)在 NebulaGraph 中重建索引¶
导入数据后,用户可以在 NebulaGraph 中重新创建并重建索引。详情请参见索引介绍。