跳转至

Nebula Algorithm

Nebula Algorithm (简称 Algorithm)是一款基于 GraphX 的 Spark 应用程序,通过提交 Spark 任务的形式使用完整的算法工具对 Nebula Graph 数据库中的数据执行图计算,也可以通过编程形式调用 lib 库下的算法针对 DataFrame 执行图计算。

前提条件

在使用 Algorithm 之前,用户需要确认以下信息:

  • Spark 版本为 2.4.x。
  • Scala 版本为 2.11。
  • (可选)如果用户需要在 Github 中克隆最新的 Algorithm,并自行编译打包,可以选择安装 Maven

使用限制

  • 点 ID 的数据必须为整数,即点 ID 可以是 INT 类型,或者是 String 类型但数据本身为整数。
  • 对于非整数的 String 类型数据,推荐使用调用算法接口的方式,可以使用 SparkSQL 的dense_rank函数进行编码,将 String 类型转换为 Long 类型。
  • 图计算会输出点的数据集,算法结果会以DataFrame形式作为点的属性存储。用户可以根据业务需求,自行对算法结果做进一步操作,例如统计、筛选。

支持算法

Nebula Algorithm 支持的图计算算法如下。

算法名 说明 应用场景
PageRank 页面排序 网页排序、重点节点挖掘
Louvain 社区发现 社团挖掘、层次化聚类
KCore K 核 社区发现、金融风控
LabelPropagation 标签传播 资讯传播、广告推荐、社区发现
ConnectedComponent 联通分量 社区发现、孤岛发现
StronglyConnectedComponent 强联通分量 社区发现
ShortestPath 最短路径 路径规划、网络规划
TriangleCount 三角形计数 网络结构分析
GraphTriangleCount 全图三角形计数 网络结构及紧密程度分析
BetweennessCentrality 介数中心性 关键节点挖掘,节点影响力计算
DegreeStatic 度统计 图结构分析

实现方法

Nebula Algorithm 实现图计算的流程如下:

  1. 利用 Nebula Spark Connector 从 Nebula Graph 数据库中读取图数据为 DataFrame。

  2. 将 DataFrame 转换为 GraphX 的图。

  3. 调用 GraphX 提供的图算法(例如 PageRank)或者自行实现的算法(例如 Louvain 社区发现)。

详细的实现方法可以参见相关 Scala 文件

获取 Nebula Algorithm

编译打包

  1. 克隆仓库nebula-algorithm

    $ git clone -b v2.5 https://github.com/vesoft-inc/nebula-algorithm.git
    
  2. 进入目录nebula-algorithm

    $ cd nebula-algorithm
    
  3. 编译打包。

    $ mvn clean package -Dgpg.skip -Dmaven.javadoc.skip=true -Dmaven.test.skip=true
    

编译完成后,在目录nebula-algorithm/target下生成类似文件nebula-algorithm-2.5.1.jar

Maven 远程仓库下载

下载地址

使用方法

调用算法接口(推荐)

lib库中提供了 10 种常用图计算算法,用户可以通过编程调用的形式调用算法。

  1. 在文件pom.xml中添加依赖。

    <dependency>
         <groupId>com.vesoft</groupId>
         <artifactId>nebula-algorithm</artifactId>
         <version>2.5.1</version>
    </dependency>
    
  2. 传入参数调用算法(以 PageRank 为例)。更多算法请参见测试用例

    Note

    执行算法的 DataFrame 默认第一列是起始点,第二列是目的点,第三列是边权重(非 Nebula Graph 中的 Rank)。

    val prConfig = new PRConfig(5, 1.0)
    val louvainResult = PageRankAlgo.apply(spark, data, prConfig, false)
    

直接提交算法包

Note

使用封装好的算法包有一定的局限性,例如落库到 Nebula Graph 时,落库的图空间中创建的 Tag 的属性名称必须和代码内预设的名称保持一致。如果用户有开发能力,推荐使用第一种方法。

  1. 设置配置文件

    {
        # Spark 相关配置
        spark: {
        app: {
            name: LPA
            # Spark 分片数量
            partitionNum:100
        }
        master:local
        }
    
        data: {
        # 数据源,可选值为 nebula、csv、json。
        source: nebula
        # 数据落库,即图计算的结果写入的目标,可选值为 nebula、csv、json。
        sink: nebula
        # 算法是否需要权重。
        hasWeight: false
        }
    
        # Nebula Graph 相关配置
        nebula: {
        # 数据源。Nebula Graph 作为图计算的数据源时,nebula.read 的配置才生效。
        read: {
            # 所有 Meta 服务的 IP 地址和端口,多个地址用英文逗号(,)分隔。格式:"ip1:port1,ip2:port2"。
            # 使用 docker-compose 部署,端口需要填写 docker-compose 映射到外部的端口
            # 可以用`docker-compose ps`查看
            metaAddress: "192.168.*.10:9559"
            # Nebula Graph 图空间名称
            space: basketballplayer
            # Nebula Graph Edge type, 多个 labels 时,多个边的数据将合并。
            labels: ["serve"]
            # Nebula Graph 每个 Edge type 的属性名称,此属性将作为算法的权重列,请确保和 Edge type 对应。
            weightCols: ["start_year"]
        }
    
        # 数据落库。图计算结果落库到 Nebula Graph 时,nebula.write 的配置才生效。
        write:{
            # Graph 服务的 IP 地址和端口,多个地址用英文逗号(,)分隔。格式:"ip1:port1,ip2:port2"。
            # 使用 docker-compose 部署,端口需要填写 docker-compose 映射到外部的端口
            # 可以用`docker-compose ps`查看
            graphAddress: "192.168.*.11:9669"
            # 所有 Meta 服务的 IP 地址和端口,多个地址用英文逗号(,)分隔。格式:"ip1:port1,ip2:port2"。
            # 使用 docker-compose 部署,端口需要填写 docker-compose 映射到外部的端口
            # 可以用`docker-compose ps`查看
            metaAddress: "192.168.*.12:9559"
            user:root
            pswd:nebula
            # 在提交图计算任务之前需要自行创建图空间及 Tag
            # Nebula Graph 图空间名称
            space:nb
            # Nebula Graph Tag 名称,图计算结果会写入该 Tag。Tag 中的属性名称固定如下:
            # PageRank:pagerank
            # Louvain:louvain
            # ConnectedComponent:cc
            # StronglyConnectedComponent:scc
            # LabelPropagation:lpa
            # ShortestPath:shortestpath
            # DegreeStatic:degree、inDegree、outDegree
            # KCore:kcore
            # TriangleCount:tranglecpunt
            # BetweennessCentrality:betweennedss
            tag:pagerank
        }
        }  
    
        local: {
        # 数据源。图计算的数据源为 csv 文件或 json 文件时,local.read 的配置才生效。
        read:{
            filePath: "hdfs://127.0.0.1:9000/edge/work_for.csv"
            # 如果 CSV 文件没有表头,使用 [_c0, _c1, _c2, ..., _cn] 表示其表头,有表头或者是 json 文件时,直接使用表头名称即可。
            # 起始点 ID 列的表头。
            srcId:"_c0"
            # 目的点 ID 列的表头。
            dstId:"_c1"
            # 权重列的表头
            weight: "_c2"
            # csv 文件是否有表头
            header: false
            # csv 文件的分隔符
            delimiter:","
        }
    
        # 数据落库。图计算结果落库到 csv 文件或 text 文件时,local.write 的配置才生效。
        write:{
            resultPath:/tmp/
        }
    
        algorithm: {
        # 需要执行的算法,可选值为:pagerank、louvain、connectedcomponent、
        # labelpropagation、shortestpaths、degreestatic、kcore、
        # stronglyconnectedcomponent、trianglecount、betweenness
        executeAlgo: pagerank
    
        # PageRank 参数
        pagerank: {
            maxIter: 10
            resetProb: 0.15  # 默认为 0.15
        }
    
        # Louvain 参数
        louvain: {
            maxIter: 20
            internalIter: 10
            tol: 0.5
        }
    
       # ConnectedComponent/StronglyConnectedComponent 参数
       connectedcomponent: {
           maxIter: 20
       }
    
       # LabelPropagation 参数
       labelpropagation: {
           maxIter: 20
       }
    
        # ShortestPath 参数
        shortestpaths: {
            # several vertices to compute the shortest path to all vertices.
            landmarks: "1"
        }
    
        # DegreeStatic 参数
        degreestatic: {}
    
        # KCore 参数
        kcore:{
            maxIter:10
            degree:1
        }
    
        # TriangleCount 参数
        trianglecount:{}
    
        # BetweennessCentrality 参数
        betweenness:{
            maxIter:5
        }
    }
    
  2. 提交图计算任务。

    ${SPARK_HOME}/bin/spark-submit --master <mode> --class com.vesoft.nebula.algorithm.Main <nebula-algorithm-2.5.1.jar_path> -p <application.conf_path>
    

    示例:

    ${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.algorithm.Main /root/nebula-algorithm/target/nebula-algorithm-2.5.1.jar -p /root/nebula-algorithm/src/main/resources/application.conf
    

视频


最后更新: November 25, 2021
Back to top